[tex]\huge \red{ \displaystyle \boxed{\mathfrak{{{Question-}}}}}[/tex]
The total surface area of a cone whose radius is halved and slant height is doubled:-
[tex]\huge \pink{\frak{ Options - }}\\ \large{\tt{ \dashrightarrow 2 \pi r(l + r)}} \\ \large{\tt{ \dashrightarrow \pi r(l + \frac{r}{4} )}} \\\large{\tt{ \dashrightarrow \pi r(l + r)}} \\ \large{\tt{ \dashrightarrow 2\pi rl}} \\ [/tex] [tex] \orange{\rule{100mm}{3.2pt}}[/tex] [tex]\large \gray{\sf \leadsto{ No \: Spam}}[/tex] [tex]\large{\sf \gray{ \leadsto Answer \: should \: explain}}[/tex] ​

Respuesta :

Formula is

[tex]\\ \rm\Rrightarrow TSA=\pi(r+\ell)[/tex]

Now

  • r is r/2
  • l is 2l

[tex]\\ \rm\Rrightarrow TSA=\pi\left(\dfrac{r}{2}\right)\left(\dfrac{r}{2}+2\ell\right)[/tex]

[tex]\\ \rm\Rrightarrow TSA=\dfrac{\pi r}{2}\left(\dfrac{r+4\ell}{2}\right)[/tex]

[tex]\\ \rm\Rrightarrow TSA=\dfrac{\pi r}{2}\times 2\left(\dfrac{r}{4}+\ell\right)[/tex]

[tex]\\ \rm\Rrightarrow TSA=\pi r(\ell+\dfrac{r}{4})[/tex]