Respuesta :

[tex]m\angle B= 41^{\circ},[/tex] [tex]m\angle F= 70^{\circ},[/tex] [tex]m\angle H = 61^{\circ},[/tex] [tex]m\angle K= 56^{\circ}.[/tex]

Step-by-step explanation:

Step 1:

The total of the angles in any triangle is 180°.

So to determine the third angle of the given triangles, we subtract the sum of the other two sides from, 180°.

The third angle = 180° - (the first angle + the second angle).

Step 2:

For triangle ABC,

[tex]m\angle B=180^{\circ}-(\angle A+\angle C)[/tex],

[tex]m\angle B=180^{\circ}-(83^{\circ} + 56^{\circ}) = 180^{\circ} - 139^{\circ} = 41^{\circ}.[/tex]

So [tex]m\angle B= 41^{\circ}.[/tex]

For triangle DEF,

[tex]m\angle F=180^{\circ}-(\angle D+\angle E)[/tex],

[tex]m\angle F=180^{\circ}-(61^{\circ} + 49^{\circ}) = 180^{\circ} - 110^{\circ} = 70^{\circ}.[/tex]

So [tex]m\angle F= 70^{\circ}.[/tex]

Step 3:

For triangle GHI,

[tex]m\angle H=180^{\circ}-(\angle G+\angle I)[/tex],

[tex]m\angle H=180^{\circ}-(49^{\circ} + 70^{\circ}) = 180^{\circ} - 119^{\circ} = 61^{\circ}.[/tex]

So [tex]m\angle H = 61^{\circ}.[/tex]

For triangle JKL,

[tex]m\angle K=180^{\circ}-(\angle J+\angle L)[/tex],

[tex]m\angle K=180^{\circ}-(83^{\circ} + 41^{\circ}) = 180^{\circ} - 124^{\circ} = 56^{\circ}.[/tex]

So [tex]m\angle K= 56^{\circ}.[/tex]