Respuesta :

[tex]( \dfrac{20x}{5x^8})^-^3[/tex] 

Take out the constants

[tex]( \dfrac{20}{5} * \dfrac{x}{x^8} ) ^-^3 [/tex] 

[tex](4*\dfrac{x}{x^8} ) ^-^3[/tex] 

Use the rule : [tex]\frac{{x}^{a}}{{x}^{b}}={x}^{a-b} [/tex] 

[tex](4x^1^-^8)^-^3[/tex] 

[tex](4x^-^7)^-^3[/tex] 

Use the negative power rule : [tex]{x}^{-a}=\frac{1}{{x}^{a}} [/tex] 

[tex] \frac{1}{4(x^-^7)}^-^3[/tex] 

[tex] \frac{1}{4^3(x^-^7)}^-^3 [/tex] 

[tex] \dfrac{1}{64x^-^2^1} [/tex] 

[tex] \dfrac{1}{64* \dfrac{1}{x^2^1}}[/tex] 

[tex]\dfrac{1}{64 \dfrac{}{x^2^1}}[/tex] 

[tex]= \dfrac{x^2^1}{64} [/tex]

On Ed2018

1) Javier did not raise the coefficients to the third power

2) when Javier raised x to the third power, he wrote that (x^1)^3=x^4, but it equals x^3

3) In the last step, Javier divided the exponents. He should have used the quotient of powers property and subtracted them.