Respuesta :
Correct Answer: Option A
From the given points, we can find the slope(m):
[tex]m= \frac{-1-8}{2-(-1)} =-3[/tex]
Thus the slope of the line containing the given two pints is -3.
Using slope, and a point we can write the equation as:
y - 8 = -3 ( x + 1)
y - 8 = -3x -3
y = -3x + 5
From the given points, we can find the slope(m):
[tex]m= \frac{-1-8}{2-(-1)} =-3[/tex]
Thus the slope of the line containing the given two pints is -3.
Using slope, and a point we can write the equation as:
y - 8 = -3 ( x + 1)
y - 8 = -3x -3
y = -3x + 5
y-yo = m (x-xo)
We must find the slope of the line:
m = (y2-y1) / (x2-x1)
m = (- 1-8) / (2 - (- 1))
m = (- 9) / (3)
m = -3
The ordered pair is:
(xo, yo) = (- 1, 8)
Substituting:
y-8 = -3 (x + 1)
Rewriting:
y = -3x-3 + 8
y = -3x + 5
Answer:
The equation of the line is:
A) y = -3x +5
We must find the slope of the line:
m = (y2-y1) / (x2-x1)
m = (- 1-8) / (2 - (- 1))
m = (- 9) / (3)
m = -3
The ordered pair is:
(xo, yo) = (- 1, 8)
Substituting:
y-8 = -3 (x + 1)
Rewriting:
y = -3x-3 + 8
y = -3x + 5
Answer:
The equation of the line is:
A) y = -3x +5