Answer:
Approximately [tex]22.8^{\circ}[/tex].
Explanation:
Let
By Snell's Law, [tex]n_i \, \sin \theta_i = n_r \, \sin \theta_r[/tex],
where
In this case,
Also, the question states that the angle of refraction is [tex]15^\circ[/tex]. By Snell's Law,
[tex]1.00 \, \sin \theta_i = 1.50\, \sin \left(15^\circ\right)[/tex].
Solve for [tex]\theta_i[/tex], the angle of incidence.
[tex]\sin \theta_i \approx 1.50 \, \sin\left(15^\circ\right) \approx 0.388229[/tex].
[tex]\implies \theta_i \approx 22.8^\circ[/tex].
Hence, the angle of incidence is approximately [tex]22.8^{\circ}[/tex].