Respuesta :
You seem to have
.. g(x) = {(2x^2 -4x -16)/(x -4) . . . x ≠ 4
.. .. .. .. ..{ kx -16 . . . . . . . . . . . . . . x=4
The first expression can be simplified to
.. (2x^2 -4x -16)/(x -4) = 2(x +2)(x -4)/(x -4) = 2(x +2) . . . . x ≠ 4
At x=4, this simplified version has the value
.. 2(4 +2) = 12
To make the alternate definition of g(x) have that same value at x=4, we must have
.. k*4 -16 = 12
.. 4k = 28
,, k = 7
The constant k must be 7 for the function to be continuous at x=4.
.. g(x) = {(2x^2 -4x -16)/(x -4) . . . x ≠ 4
.. .. .. .. ..{ kx -16 . . . . . . . . . . . . . . x=4
The first expression can be simplified to
.. (2x^2 -4x -16)/(x -4) = 2(x +2)(x -4)/(x -4) = 2(x +2) . . . . x ≠ 4
At x=4, this simplified version has the value
.. 2(4 +2) = 12
To make the alternate definition of g(x) have that same value at x=4, we must have
.. k*4 -16 = 12
.. 4k = 28
,, k = 7
The constant k must be 7 for the function to be continuous at x=4.
Answer:
The value of k is 7.
Step-by-step explanation:
Given function,
[tex]f(x)=\left\{\begin{matrix}\frac{2x^2-4x-16}{x-4} & x\neq 4\\ kx-16 & x=4\end{matrix}\right.[/tex]
The function f(x) would be continuous, if,
[tex]\lim_{x\rightarrow 4} \frac{2x^2-4x-16}{x-4}=f(4)[/tex]
[tex]\lim_{x\rightarrow 4} 2(\frac{x^2-2x-8}{x-4})=4k-16[/tex]
[tex]\lim_{x\rightarrow 4} 2(\frac{x^2-4x+2x-16}{x-4})=4k-16[/tex]
[tex]\lim_{x\rightarrow 4} 2(\frac{x(x-4)+2(x-4)}{x-4})=4k-16[/tex]
[tex]\lim_{x\rightarrow 4} 2(\frac{(x+2)(x-4)}{x-4})=4k-16[/tex]
[tex]\lim_{x\rightarrow 4} 2(x+2)=4k-16[/tex]
[tex]2(4+2) = 4k-16[/tex]
[tex]2(6)=4k-16[/tex]
[tex]12+16 = 4k[/tex]
[tex]\implies 4k=28\implies k=7[/tex]
Hence, the value of k would be 7.