Respuesta :
We have Boltzmann's equation S = k ln W
Boltzmann's constant k = 1.381 x 10^-23 J/K
W = Number of absorption sites
At W = 484, Entropy S1 = 1.381 x 10^-23 ln 484 = 8.537 x 10^-23 J/K
At W = 729, Entropy S2 = 1.381 x 10^-23 ln 729 = 9.103 x 10^-23 J/K
Change of Entropy = S2 - S1 = 0.566 x 10^-23 J/K
Boltzmann's constant k = 1.381 x 10^-23 J/K
W = Number of absorption sites
At W = 484, Entropy S1 = 1.381 x 10^-23 ln 484 = 8.537 x 10^-23 J/K
At W = 729, Entropy S2 = 1.381 x 10^-23 ln 729 = 9.103 x 10^-23 J/K
Change of Entropy = S2 - S1 = 0.566 x 10^-23 J/K
Answer:
The change in entropy is [tex]5.65\times 10^{-24} J/K[/tex].
Explanation:
The entropy can be determined from Boltzmann equation of entropy:
[tex]S=K_b\ln w[/tex]
S = Entropy of the system
[tex]K_b=1.38\times 10^{-23} J/K[/tex]
w = Number of microstates
1) Number of adoption sites = 484
w = 484
[tex]S_1=1.38\times 10^{-23} J/K\ln 484=8.5312\times 10^{-23} J/K[/tex]
2) Number of adoption sites = 729
w =729
[tex]S_2=1.38\times 10^{-23} J/K\ln 729=9.0965\times 10^{-23} J/K[/tex]
Change in entropy =[tex]S_2-S_1[/tex]
[tex]\Delta S=9.0965\times 10^{-23} J/K-8.5312\times 10^{-23} J/K=5.653\times 10^{-24} J/K[/tex]
The change in entropy is [tex]5.65\times 10^{-24} J/K[/tex].