Respuesta :

The answer is D.
Use guess and check:
Sub in x=0 into both formulas
y=-2(3)^1-0
y=-2(3)^1
y=-2(3)
y=-6
y=-6(1/3)^x
y=-6(1/3)^0
y=-6(1)
y=-6

The exponential function f(x)=-2•3^(1-x) in the form f(x)=ab^x is [tex]-6(\frac{1}{3} )^x[/tex] where a  = -6 abd b = 1/3

Given the function f(x) = [tex]-2\cdot3^{1-x}[/tex], we are to express in the form [tex]ab^x[/tex]

The given function can be rewritten as:

f(x) = -2 * 3^1 * 3^-x

f(x) = [tex]-6 * (\frac{1}{3})^x[/tex]

f(x) = [tex]-6(\frac{1^x}{3^x} ) = -6(\frac{1}{3} )^x[/tex]

This shows that the exponential function f(x)=-2•3^(1-x) in the form f(x)=ab^x is [tex]-6(\frac{1}{3} )^x[/tex] where a  = -6 abd b = 1/3

Learn more here: https://brainly.com/question/19245707