Respuesta :
Factorize the polynomials individually;
q²-7q-8= (q-8)(q+1) <-- denominator
q²+3q-4= (q-1)(q+4)
When a number is divided by 0, it becomes indefinite (creating a hole in the graph).
(q-8)(q+1)=0
q=8
q=-1
Therefore, the second option.
Hope I helped :)
q²-7q-8= (q-8)(q+1) <-- denominator
q²+3q-4= (q-1)(q+4)
When a number is divided by 0, it becomes indefinite (creating a hole in the graph).
(q-8)(q+1)=0
q=8
q=-1
Therefore, the second option.
Hope I helped :)
The domain restrictions of [tex]\frac{q^2-7q-8 }{q^2+3q-4}[/tex] are q≠1 and q≠−4
The given expression is:
[tex]\frac{q^2-7q-8 }{q^2+3q-4}[/tex]
The expression will be invalid when the denominator equals 0
The numerator = [tex]q^2 - 7q - 8[/tex]
The denominator = [tex]q^2 + 3q - 4[/tex]
Equate the denominator to zero
[tex]q^2 + 3q - 4 = 0[/tex]
Solve for q in the equation [tex]q^2 + 3q - 4 = 0[/tex] by factorization
[tex]q^2 + 3q - 4 = 0\\q^2 -q + 4q - 4 = 0\\q(q - 1) + 4(q - 1) = 0\\(q-1)(q+4) = 0\\q - 1 = 0\\q = 1\\q + 4 = 0\\q = -4[/tex]
For the rational expression to be valid [tex]q \neq 1[/tex] and [tex]q \neq -4[/tex]
Learn more here: https://brainly.com/question/8007372