Respuesta :

Ziexli
So here all you have to do is use the midpoint formula: [tex] \frac{x+x}{2} , \frac{y+y}{2} [/tex] and plug-in RS points [tex] \frac{0+8}{2}, \frac{6+0}{2} [/tex]and RT points [tex] \frac{0+2}{2}, \frac{6+0}{2} [/tex]and you will get (1,3) and (4,3). 

Answer:

The end points of midsegement for triangle RST are (1,3) and(4,3) which is parallel to TS.

Step-by-step explanation:

We are given that a figure of  triangle RTS in which the coordinates of R(0,6) , T(2,0) and S(8,0).

We have to find the end points of midsegment for triangle RST that is parallel TS

Let AB is midsegment where A is the mid point of segment RT and B is the midpoint of segment RS of triangle RST which is parallel to the segment TS.

To find the coordinates of end point of midsegment AB using midpoint formula

Midpoint formula :[tex]x=\frac{x_1+x_2}{2}, y=\frac{y_1+y_2}{2}[/tex]

The coordinate of A

[tex]x=\frac{0+2}{2}[/tex], [tex]y=\frac{0+6}{2}[/tex]

[tex]x_1=0,x_2=2,y_1=6,y_2=0[/tex]

[tex]x=1,y=3[/tex]

The coordinates of A is (1,3).

The coordinates of mid point B

[tex]x=\frac{0+8}{2},y=\frac{0+6}{2}[/tex]

[tex]x_1=0,y_1=6,x_2=8,y_2=0[/tex]

[tex]x=4,y=3[/tex]

The coordinates of midpoint B is (4,3).

Therefore, the end points of midsegement for triangle RST are (1,3) and(4,3) which is parallel.