In parallelogram EFGH , EJ=x2−4 and JG=3x .

What is EG ?



4

6

12

24


What is the measure of ∠DAB?



Enter your answer in the box.

In parallelogram EFGH EJx24 and JG3x What is EG 4 6 12 24 What is the measure of DAB Enter your answer in the box class=
In parallelogram EFGH EJx24 and JG3x What is EG 4 6 12 24 What is the measure of DAB Enter your answer in the box class=

Respuesta :

Answer:

The required length of [tex]EJ[/tex] is [tex]24[/tex] units.

Step-by-step explanation:

Given: In parallelogram [tex]EFGH, EJ=x^2-4[/tex] and [tex]JG=3x[/tex].

we know that

In a parallelogram; opposite sides are equal, opposite angles are equal and diagonals bisect each other.

From the figure,

[tex]EJ=EJ+JG[/tex]

And [tex]EJ=JG[/tex]              ( diagonals of parallelogram bisect each other )

[tex]x^2-4=3x\\x^2-3x-4=0\\x^2-4x+x-4=0\\x(x-4)+1(x-4)=0\\(x-4)(x+1)=0\\x-4=0\rm\;\;(or)\;\; x+1=0\\x=4\; \rm\;(or)\; \;x=-1[/tex]

Neglecting the value of [tex]x=-1[/tex] as length cant be negative.

Therefore,

[tex]EJ=JG+JG\\EJ=2JG\\EJ=2\times3\times4\\EJ=24[/tex]

Hence, the length of [tex]EJ[/tex] is [tex]24[/tex] units.

For more information:

https://brainly.com/question/11560033?referrer=searchResults

Ver imagen divyamadaan8054