Respuesta :
Answer:
[tex]f^{-1}(x)=\frac{x+10}{2}[/tex]
Step-by-step explanation:
We ate asked to find the inverse of the given function [tex]f(x)=2x-10[/tex].
To find the inverse of function, first of all we will replace [tex]f(x)=y[/tex] and then interchange x and y values as shown below:
[tex]y=2x-10[/tex]
Inter-change x and y variables:
[tex]x=2y-10[/tex]
Solve for y using opposite operations:
[tex]x+10=2y-10+10[/tex]
[tex]x+10=2y[/tex]
Switch sides:
[tex]2y=x+10[/tex]
Divide both sides by 2:
[tex]\frac{2y}{2}=\frac{x+10}{2}[/tex]
[tex]y=\frac{x+10}{2}[/tex]
We will inverse function notation [tex]f^{-1}(x)[/tex] to write the inverse function as:
[tex]f^{-1}(x)=\frac{x+10}{2}[/tex]
Therefore, our required inverse function would be [tex]f^{-1}(x)=\frac{x+10}{2}[/tex].