Problem 1
x^2 + y^2 - 4x + 2y = 11
x^2 - 4x + y^2 + 2y = 11
(x^2 - 4x) + (y^2 + 2y) = 11
(x^2 - 4x + 4) + (y^2 + 2y) = 11 + 4
(x - 2)^2 + (y^2 + 2y) = 15
(x - 2)^2 + (y^2 + 2y + 1) = 15+1
(x - 2)^2 + (y + 1)^2 = 16
The equation
(x - 2)^2 + (y + 1)^2 = 16
can be written as
(x - 2)^2 + (y - (-1))^2 = 4^2
which is in the form
(x-h)^2 + (y-k)^2 = r^2
where,
center = (h,k) = (2,-1)
radius = r = 4
Answer: Choice A) (2,-1)
====================================================
Problem 2
Given Center = (h,k) = (4,-3)
h = 4, k = -3
Given Radius = r = 2
(x-h)^2 + (y-k)^2 = r^2
(x-4)^2 + (y-(-3))^2 = 2^2
(x-4)^2 + (y+3)^2 = 4
Answer is choice D
====================================================
Problem 3
Based on the picture, the center is (-2,-7)
(h,k) = (-2,-7)
h = -2
k = -7
Each tick mark is 1/2 a unit. The distance from the red center to the outer edge of the circle is 1 tick or 1/2 a unit. The radius is 1/2 a unit. So r = 1/2 and r^2 = (1/2)^2 = 1/4
(x-h)^2 + (y-k)^2 = r^2
(x-(-2))^2 + (y-(-7))^2 = (1/2)^2
(x+2)^2 + (y+7)^2 = 1/4
Answer is choice B
====================================================
Problem 4
x^2 + y^2 - 18x + 12y + 68 = 0
(x^2 - 18x) + (y^2 + 12y) + 68 = 0
(x^2 - 18x + 0) + (y^2 + 12y + 0) + 68 = 0
(x^2 - 18x + 81 - 81) + (y^2 + 12y + 36 - 36) + 68 = 0
(x^2 - 18x + 81) - 81 + (y^2 + 12y + 36) - 36 + 68 = 0
(x - 9)^2 + (y + 6)^2 - 81 - 36 + 68 = 0
(x - 9)^2 + (y + 6)^2 - 49 = 0
(x - 9)^2 + (y + 6)^2 = 49
(x - 9)^2 + (y - (-6))^2 = 7^2
The center is (9,-6) and the radius is 7
====================================================
Problem 5
Center = (h,k) = (-3,7)
Radius = r = 5
(x-h)^2 + (y-k)^2 = r^2
(x-(-3))^2 + (y-7)^2 = 5^2
(x+3)^2 + (y-7)^2 = 25
Answer is choice B