Alex had (3x + 1) yards of silk. He then purchases (x2 + 5x + 4) packages each containing (2x + 1) yards of silk. If he uses (2x3 + 8x2 + 10x + 4) yards of silk to make a kite, how much silk remains?

Respuesta :

Alex has originally [tex]3x+1[/tex] yards of silk.

Then he purchases [tex]x^2+5x+4[/tex] packages, each containing [tex](2x+1)[/tex] yards of silk, so he purchases a total of 

                 [tex](x^2+5x+4)\cdot(2x+1)[/tex] yards of silk.

Distributing [tex](x^2+5x+4)[/tex] over [tex]2x[/tex], and 1 we have

[tex](x^2+5x+4)\cdot2x+(x^2+5x+4)\cdot+1=2x^3+10x^2+8x+x^2+5x+4[/tex]

[tex]=2x^3+11x^2+13x+4[/tex].


The original amount of silk, and the purchased amount are a total of

[tex]=2x^3+11x^2+13x+4 + (3x+1)=2x^3+11x^2+16x+5[/tex].           
 

Of these, [tex]2x^3+8x^2+10x+4[/tex] are used. Thus, in the end the amount left is 
                 [tex]available\ amount-used\ amount[/tex]:


[tex](x^3+11x^2+16x+5)-(2x^3+8x^2+10x+4)=-x^3+3x^2+6x+1[/tex]


Answer: [tex]-x^3+3x^2+6x+1[/tex] yards