Given the functions f(x) = 2x2 - 8x, g(x) = x2 - 6x + 1, and h(x) = -2x2, rank them from least to greatest based on their axis of symmetry. (2 points)


g(x), f(x), h(x)

f(x), g(x), h(x)

h(x), f(x), g(x)

h(x), g(x), f(x)

Respuesta :

axis of symmetry of h(x)   is x = 0

for f(x) its x = 2 
and for g(x) its  x = 3

so its 
 option 3

Answer:

h(x), f(x) , g(x)

Step-by-step explanation:

[tex]f(x) = 2x^2 - 8x[/tex]

Axis of symmetry at [tex]x=\frac{-b}{2a}[/tex], a=2, b=-8

[tex]x=\frac{-b}{2a}[/tex]

[tex]x=\frac{-(-8)}{2(2)}=2[/tex]

[tex]g(x) = x^2 - 6x + 1[/tex], a= 1, b=-6

[tex]x=\frac{-b}{2a}[/tex]

[tex]x=\frac{-(-6)}{2(1)}=3[/tex]

[tex]h(x) = -2x^2[/tex], a=-2, b=0

[tex]x=\frac{-b}{2a}[/tex]

[tex]x=\frac{-(0)}{2(-2)}=0[/tex]

Now rank the function based on their axis of symmetry

h(x), f(x) , g(x)