Respuesta :
axis of symmetry of h(x) is x = 0
for f(x) its x = 2
and for g(x) its x = 3
so its
option 3
for f(x) its x = 2
and for g(x) its x = 3
so its
option 3
Answer:
h(x), f(x) , g(x)
Step-by-step explanation:
[tex]f(x) = 2x^2 - 8x[/tex]
Axis of symmetry at [tex]x=\frac{-b}{2a}[/tex], a=2, b=-8
[tex]x=\frac{-b}{2a}[/tex]
[tex]x=\frac{-(-8)}{2(2)}=2[/tex]
[tex]g(x) = x^2 - 6x + 1[/tex], a= 1, b=-6
[tex]x=\frac{-b}{2a}[/tex]
[tex]x=\frac{-(-6)}{2(1)}=3[/tex]
[tex]h(x) = -2x^2[/tex], a=-2, b=0
[tex]x=\frac{-b}{2a}[/tex]
[tex]x=\frac{-(0)}{2(-2)}=0[/tex]
Now rank the function based on their axis of symmetry
h(x), f(x) , g(x)