noppee
contestada

In triangle FGH, GJ is an angle bisector of ∠G and perpendicular to FH.

What is the length of FH?

___ units

In triangle FGH GJ is an angle bisector of G and perpendicular to FH What is the length of FH units class=

Respuesta :

The answer you're looking for is:
16. I know this for certain.

Remember to mark Brainliest if this was helpful!

we know that

in the right triangle FGJ

[tex]cos(FGJ)=\frac{GJ}{FG}= \frac{GJ}{3x-8}[/tex] ----> equation A

in the right triangle GJH

[tex]cos(JGH)=\frac{GJ}{GH}= \frac{GJ}{16}[/tex] ----> equation B

m∠(FGJ)=m∠(JGH) ------> because GJ is an angle bisector of ∠G

so

equate equation A and equation B

[tex]\frac{GJ}{3x-8}=\frac{GJ}{16}\\ 3x-8=16\\3x=24 \\x=8\ units[/tex]

that means

[tex]FG=3*8-8=16\ units[/tex]

[tex]FG=GH[/tex]-------> the triangle FGH is an isosceles triangle

hence

[tex]FJ=JH\\FJ=8\ units[/tex]

[tex]JH=8\ units[/tex]

[tex]FH=FJ+JH=8+8=16\ units[/tex]

therefore

the answer is

[tex]FH=16\ units[/tex]