Respuesta :
[tex]\begin{cases}x(\rho,\theta,\varphi)=\rho\cos\theta\sin\varphi\\y(\rho,\theta,\varphi)=\rho\sin\theta\sin\varphi\\z(\rho,\theta,\varphi)=\rho\cos\varphi\end{cases}\implies\mathrm dV=\mathrm dx\,\mathrm dy\,\mathrm dz=\rho^2\sin\varphi\,\mathrm d\rho\,\mathrm d\theta\,\mathrm d\varphi[/tex]
[tex]x^2+y^2=\rho^2\cos^2\theta\sin^2\varphi+\rho^2\sin^2\theta\sin^2\varphi=\rho^2\sin^2\varphi[/tex]
[tex]\displaystyle\iiint_E(x^2+y^2)\,\mathrm dV=\int_{\varphi=0}^{\varphi=\pi}\int_{\theta=0}^{\theta=2\pi}\int_{\rho=1}^{\rho=5}\rho^4\sin^3\varphi\,\mathrm d\rho\,\mathrm d\theta\,\mathrm d\varphi[/tex]
[tex]=\displaystyle2\pi\left(\int_{\varphi=0}^{\varphi=\pi}\sin^3\varphi\,\mathrm d\varphi\right)\left(\int_{\rho=1}^{\rho=5}\rho^4\,\mathrm d\rho\right)[/tex]
[tex]=\dfrac{24992\pi}{15}[/tex]
[tex]x^2+y^2=\rho^2\cos^2\theta\sin^2\varphi+\rho^2\sin^2\theta\sin^2\varphi=\rho^2\sin^2\varphi[/tex]
[tex]\displaystyle\iiint_E(x^2+y^2)\,\mathrm dV=\int_{\varphi=0}^{\varphi=\pi}\int_{\theta=0}^{\theta=2\pi}\int_{\rho=1}^{\rho=5}\rho^4\sin^3\varphi\,\mathrm d\rho\,\mathrm d\theta\,\mathrm d\varphi[/tex]
[tex]=\displaystyle2\pi\left(\int_{\varphi=0}^{\varphi=\pi}\sin^3\varphi\,\mathrm d\varphi\right)\left(\int_{\rho=1}^{\rho=5}\rho^4\,\mathrm d\rho\right)[/tex]
[tex]=\dfrac{24992\pi}{15}[/tex]
To solve this problem, it is necessary determine the integrations limits first.
The solution is:
V = 1666,13×π vol units
In order to express the information in spherical coordinates, we have:
x = ρ×cosθ×sinφ
y = ρ×sinθ×sinφ
z = ρ×cosφ
and dV = ρ²×sinφ×dρ×dθ×dφ
0 ≤ φ ≤ π
0 ≤ θ ≤ 2×π
x² + y² + z² = 25 and x² + y² + z² = 1 are two concentric spheres with center at the origin and radius 5 and 1 respectevely .
According to that:
1 ≤ ρ ≤ 5
V = ∫∫∫ ( x² + y² )× dV
V = ∫∫∫ ( x² + y² )×ρ²×sinφ×dρ×dθ×dφ
V = ∫∫∫ ( ρ²×cos²θ×sin²φ + ρ²×sin²θ×sin²φ ) ×ρ²×sinφ×dρ×dθ×dφ
V = ∫∫∫ [ ρ²×sin²φ ( cos²θ + sin²θ ) ×ρ²×sinφ×dρ×dθ×dφ
V = ∫∫∫ [ ρ²×sin²φ×ρ²×sinφ×dρ×dθ×dφ
V = ∫∫∫ [ ρ⁴×sin³φ×dρ×dθ×dφ
V = ∫₁⁵ρ⁴×dρ ×∫dθ ×∫sin³φ×dφ
V = ρ⁵/5 |₁⁵×∫dθ ×∫sin³φ×dφ
ρ⁵/5 |₁⁵ = 5⁵/5 - 1⁵/5 = 3125 / 5 - 1/5 = 3124/5
V = 3124/5× θ |₀²π×∫sin³φ×dφ
θ |₀²π = 2×π - 0
V = 3124/5× (2×π) ×∫sin³φ×dφ
∫sin³φ×dφ [ 0 y π ] = 4/3 (from Simbolab)
V = 3124/5× (2×π) ×4/3
V = 1666,13×π vol units
Related Lnk :https://brainly.com/question/4465072