Which inequality is equivalent to [tex]3+ \frac{4}{x} \geq \frac{x+2}{x} [/tex] ?


A [tex] \frac{2x+2}{x} \geq 0[/tex]
B [tex] \frac{2x+6}{x} \geq 0[/tex]
C[tex] \frac{-x+5}{x} \geq 0[/tex]
D[tex] \frac{-x+9}{x} \geq 0[/tex]

Please show work and explain. I legitimately want to understand how to solve a question like this. Thank you!

Respuesta :

First, take all expressions to one side of the inequality:

                 [tex]\displaystyle{ 3+\frac{4}{x}- \frac{x+2}{x} \geq 0 [/tex].

Multiply 3 by [tex]\displaystyle{ \frac{x}{x} [/tex] to write it as a fraction with denominator equal to the other expressions

             [tex]\displaystyle{ \frac{3x}{x}+\frac{4}{x}- \frac{x+2}{x} \geq 0 [/tex].


Since all three expressions have equal denominator, we collect them into one rational expression as follows:

[tex]\displaystyle{ \frac{3x+4-x-2}{x} [/tex], which is equal to [tex]\displaystyle{ \frac{2x+2}{x} [/tex].


Thus the inequality is [tex]\displaystyle{ \frac{2x+2}{x} \geq 0[/tex].


Answer: A