Respuesta :
The table showing the sums and the number of appearance is given below:
sum(x) number of appearance(f) x - x(bar) (x - x(bar))^2 f(x - x(bar))^2
2 1 -5 25 25
3 2 -4 16 32
4 3 -3 9 27
5 4 -2 4 16
6 5 -1 1 5
7 6 0 0 0
8 5 1 1 5
9 4 2 4 16
10 3 3 9 27
11 2 4 16 32
12 1 5 25 25
Mean is given by
[tex] \frac{\Sigma fx}{\Sigma f} = \frac{2\times1+3\times2+4\times3+5\times4+6\times5+7\times6+8\times5+9\times4+10\times3+11\times2+12\times1}{1+2+3+4+5+6+5+4+3+2+1} \\ \\ = \frac{2+6+12+20+30+42+40+36+30+22+12}{36} = \frac{252}{36} =7[/tex]
The standard deviation is given by:
[tex] \frac{\Sigma f(x-\bar{x})^2}{\Sigma f} = \frac{25+32+27+16+5+0+5+16+27+32+25}{36} = \frac{210}{36} =5.833[/tex]
sum(x) number of appearance(f) x - x(bar) (x - x(bar))^2 f(x - x(bar))^2
2 1 -5 25 25
3 2 -4 16 32
4 3 -3 9 27
5 4 -2 4 16
6 5 -1 1 5
7 6 0 0 0
8 5 1 1 5
9 4 2 4 16
10 3 3 9 27
11 2 4 16 32
12 1 5 25 25
Mean is given by
[tex] \frac{\Sigma fx}{\Sigma f} = \frac{2\times1+3\times2+4\times3+5\times4+6\times5+7\times6+8\times5+9\times4+10\times3+11\times2+12\times1}{1+2+3+4+5+6+5+4+3+2+1} \\ \\ = \frac{2+6+12+20+30+42+40+36+30+22+12}{36} = \frac{252}{36} =7[/tex]
The standard deviation is given by:
[tex] \frac{\Sigma f(x-\bar{x})^2}{\Sigma f} = \frac{25+32+27+16+5+0+5+16+27+32+25}{36} = \frac{210}{36} =5.833[/tex]