Respuesta :

Answer:

[tex]x\approx 67.5\°[/tex]

Step-by-step explanation:

We can solve for x using the trigonometric ratio tangent:

[tex]\tan(\theta) = \dfrac{\text{opposite}}{\text{adjacent}}[/tex]

where:

  • [tex]\theta[/tex] is the interior angle of a right triangle.

Since x is supplementary to its adjacent interior angle ([tex]\theta[/tex]), we can say that:

[tex]x + \theta = 90\°[/tex]

Rearranging the equation to solve for [tex]\theta[/tex], we get:

[tex]\theta = 90\° - x[/tex]

Now, we can plug the known values into the tangent equation:

[tex]\tan(90\° - x) = \dfrac{3.4}{8.2}[/tex]

↓ taking the inverse tangent of both sides

[tex]90\°-x=\tan^{\!-1}\!\left(\dfrac{3.4}{8.2}\right)[/tex]

↓ rearranging to isolate x on one side

[tex]x=90\°-\tan^{\!-1}\!\left(\dfrac{3.4}{8.2}\right)[/tex]

evaluating using a calculator

[tex]x\approx 67.4794\°[/tex]

Finally, we can round to 1 decimal place (tenths place):

[tex]\boxed{x\approx 67.5\°}[/tex]