According to this diagram, what is tan 62?

Answer:
[tex]\tan 62^\circ=\dfrac{15}{8}[/tex]
Step-by-step explanation:
[tex]\tan 62^\circ=\dfrac{\text{opposite side to 62}^\circ}{\text{adjacent side to opposite side}}=\dfrac{15}{8}[/tex]
If you had to find other trigonometric ratios:
[tex]\text{1. }\sin 62^\circ=\dfrac{\text{opposite to 62}^\circ}{\text{hypotenuse}}=\dfrac{15}{17}[/tex]
[tex]\text{2. }\cos 62^\circ=\dfrac{\text{adjacent}}{\text{hypotenuse}}=\dfrac{8}{17}[/tex]
[tex]\text{3. }\cot 62^\circ=\dfrac{\text{adjacent side}}{\text{opposite side}}=\dfrac{8}{15}[/tex]
[tex]\text{4. }\csc 62^\circ=\dfrac{\text{hypotenuse}}{\text{opposite}}=\dfrac{17}{15}[/tex]
[tex]\text{5. }\sec 62^\circ=\dfrac{\text{hypotenuse}}{\text{}\text{adjacent}}=\dfrac{17}{8}[/tex]