Respuesta :

[tex]\bf \textit{let's say that, is an angle }\theta\quad so\qquad sec^{-1}(-\sqrt{2})=\theta \\\\\\ \textit{this means}\qquad sec(\theta )=-\sqrt{2}\quad but\quad sec(\theta)=\cfrac{1}{cos(\theta)}\qquad then \\\\\\ \cfrac{1}{cos(\theta)}=-\sqrt{2}\implies \cfrac{1}{-\sqrt{2}}=cos(\theta ) \\\\\\ \textit{now, if we rationalize the denominator, we get }-\cfrac{\sqrt{2}}{2} \\\\\\ -\cfrac{\sqrt{2}}{2}=cos(\theta )\implies cos^{-1}\left( -\frac{\sqrt{2}}{2} \right)=cos^{-1} [cos(\theta )][/tex]

[tex]\bf cos^{-1}\left( -\frac{\sqrt{2}}{2} \right)=\measuredangle \theta \implies \measuredangle \theta = \begin{cases} \frac{3\pi }{4}\\ \frac{5\pi }{4} \end{cases}[/tex]