Respuesta :

check the picture below.

[tex]\bf \textit{Law of Cosines}\\ \quad \\ c^2 = {{ a}}^2+{{ b}}^2-(2{{ a}}{{ b}})cos(C)\implies c = \sqrt{{{ a}}^2+{{ b}}^2-(2{{ a}}{{ b}})cos(C)} \\\\\\ \cfrac{{{ a}}^2+{{ b}}^2-c^2}{2{{ a}}{{ b}}}=cos(C)\implies cos^{-1}\left(\cfrac{{{ a}}^2+{{ b}}^2-c^2}{2{{ a}}{{ b}}}\right)=\measuredangle C\\\\ -------------------------------\\\\ \begin{cases} d=10\\ e=18\\ f=22 \end{cases}\implies cos^{-1}\left(\cfrac{{{ 18}}^2+{{ 22}}^2-10^2}{2(18)(22)}\right)=\measuredangle D[/tex]

[tex]\bf \implies cos^{-1}\left(0.893\overline{93}\right)=\measuredangle D\implies 26.63^o\approx \measuredangle D[/tex]
Ver imagen jdoe0001