an even function can be reflected across the y axis and map onto itself
example: f(x)=x²
an easy test is
if a function is even, then f(-x)=f(x)
an odd function can be reflected about the origin and map onto itself
example: f(x)=x³
a functio is odd if f(-x)=-f(x)
assuming ya meant [tex]f(x)=\frac{2}{x^2}[/tex]
test the f(-x)=f(x) thing
[tex]f(x)=\frac{2}{x^2}[/tex]
[tex]f(-x)=\frac{2}{(-x)^2}[/tex]
[tex]f(-x)=\frac{2}{((-1)(x))^2}[/tex]
[tex]f(-x)=\frac{2}{(-1)^2(x)^2}[/tex]
[tex]f(-x)=\frac{2}{1x^2}[/tex]
[tex]f(-x)=\frac{2}{x^2}[/tex]
yep, same
it is even