Respuesta :
check the picture below. Recall, is an open-top box, so, the top is not part of the surface area, of the 300 cm². Also, recall, the base is a square, thus, length = width = x.
[tex]\bf \textit{volume of a rectangular prism}\\\\ V=lwh\quad \begin{cases} l = length\\ w=width\\ h=height\\ -----\\ w=l=x \end{cases}\implies V=xxh\implies \boxed{V=x^2h}\\\\ -------------------------------\\\\ \textit{surface area}\\\\ S=4xh+x^2\implies 300=4xh+x^2\implies \cfrac{300-x^2}{4x}=h \\\\\\ \boxed{\cfrac{75}{x}-\cfrac{x}{4}=h}\\\\ -------------------------------\\\\ V=x^2\left( \cfrac{75}{x}-\cfrac{x}{4} \right)\implies V(x)=75x-\cfrac{1}{4}x^3[/tex]
so.. that'd be the V(x) for such box, now, where is the maximum point at?
[tex]\bf V(x)=75x-\cfrac{1}{4}x^3\implies \cfrac{dV}{dx}=75-\cfrac{3}{4}x^2\implies 0=75-\cfrac{3}{4}x^2 \\\\\\ \cfrac{3}{4}x^2=75\implies 3x^2=300\implies x^2=\cfrac{300}{3}\implies x^2=100 \\\\\\ x=\pm10\impliedby \textit{is a length unit, so we can dismiss -10}\qquad \boxed{x=10}[/tex]
now, let's check if it's a maximum point at 10, by doing a first-derivative test on it. Check the second picture below.
so, the volume will then be at [tex]\bf V(10)=75(10)-\cfrac{1}{4}(10)^3\implies V(10)=500 \ cm^3[/tex]
[tex]\bf \textit{volume of a rectangular prism}\\\\ V=lwh\quad \begin{cases} l = length\\ w=width\\ h=height\\ -----\\ w=l=x \end{cases}\implies V=xxh\implies \boxed{V=x^2h}\\\\ -------------------------------\\\\ \textit{surface area}\\\\ S=4xh+x^2\implies 300=4xh+x^2\implies \cfrac{300-x^2}{4x}=h \\\\\\ \boxed{\cfrac{75}{x}-\cfrac{x}{4}=h}\\\\ -------------------------------\\\\ V=x^2\left( \cfrac{75}{x}-\cfrac{x}{4} \right)\implies V(x)=75x-\cfrac{1}{4}x^3[/tex]
so.. that'd be the V(x) for such box, now, where is the maximum point at?
[tex]\bf V(x)=75x-\cfrac{1}{4}x^3\implies \cfrac{dV}{dx}=75-\cfrac{3}{4}x^2\implies 0=75-\cfrac{3}{4}x^2 \\\\\\ \cfrac{3}{4}x^2=75\implies 3x^2=300\implies x^2=\cfrac{300}{3}\implies x^2=100 \\\\\\ x=\pm10\impliedby \textit{is a length unit, so we can dismiss -10}\qquad \boxed{x=10}[/tex]
now, let's check if it's a maximum point at 10, by doing a first-derivative test on it. Check the second picture below.
so, the volume will then be at [tex]\bf V(10)=75(10)-\cfrac{1}{4}(10)^3\implies V(10)=500 \ cm^3[/tex]

