Respuesta :

[tex]\bf \begin{array}{rlclll} (2&,&-2)\\ \uparrow &&\uparrow \\ x&&y \end{array}\qquad \begin{cases} r=\sqrt{x^2+y^2}\\ \theta =tan^{-1}\left( \frac{y}{x}\right)\\ ----------\\ r=\sqrt{(2)^2+(-2)^2}\\ \qquad \sqrt{8}\\ \qquad 2\sqrt{2}\\ \theta =tan^{-1}\left( \frac{-2}{2} \right)\\ \qquad tan^{-1}(-1)\\\\ \qquad \cfrac{3\pi }{4}\ ,\ \boxed{\frac{7\pi }{4}} \end{cases}\implies \left(2\sqrt{2}\ ,\ \frac{7\pi }{4} \right)[/tex]

now, notice, there are two feasible angles, they both have a tangent of -1, however, our x,y pair is +,-, the x is positive and the y is negative, that means the rectangular point is in the IV quadrant, thus, the angle is in the IV quadrant, not the II quadrant.

Answer:

([tex]2\sqrt{2}[/tex], 315°), ([tex]-2\sqrt{2}[/tex], 135°)

Hope this helps!