Respuesta :

[tex]\bf \qquad \qquad \textit{ratio relations} \\\\ \begin{array}{ccccllll} &Sides&Area&Volume\\ &-----&-----&-----\\ \cfrac{\textit{similar shape}}{\textit{similar shape}}&\cfrac{s}{s}&\cfrac{s^2}{s^2}&\cfrac{s^3}{s^3} \end{array} \\\\ -----------------------------\\\\ \cfrac{\textit{similar shape}}{\textit{similar shape}}\qquad \cfrac{s}{s}=\cfrac{\sqrt{s^2}}{\sqrt{s^2}}=\cfrac{\sqrt[3]{s^3}}{\sqrt[3]{s^3}}\\\\ -------------------------------\\\\[/tex]

[tex]\bf \cfrac{smaller}{larger}\qquad \cfrac{s}{s}=\cfrac{\sqrt{48\pi }}{\sqrt{75\pi }}\implies \cfrac{s}{s}=\cfrac{\sqrt{(2^2)^2\cdot 3}}{\sqrt{5^2\cdot 3}}\implies \cfrac{s}{s}=\cfrac{4\sqrt{3}}{5\sqrt{3}} \\\\\\ \cfrac{s}{s}=\cfrac{4}{5}[/tex]

Answer:

4:5

Step-by-step explanation: