Respuesta :
Answer: The converse of the statement will be :
[tex]\text{If }x^2 = 64\text{, then } x=8.[/tex] which is not true.
Step-by-step explanation:
The given statement : [tex]\text{If } x = 8\text{, then }x^2 = 64.[/tex]
To write a converse of a conditional statement "p then q", will be "q then p" the hypothesis and conclusion interchanges .
Then the converse of the statement will be :
[tex]\text{If } x^2 = 64\text{, then }x=8.[/tex] which is not true.
Since , [tex]8^2=64\text{ and }-8^2=64[/tex]
Therefore, [tex]\text{If }x^2 = 64\text{, then } x=8\ or\ x=-8.[/tex]
Answer:
If [tex]x^2=64[/tex], then x=8
Step-by-step explanation:
We are given that a conditional statement
If x=8, then [tex]x^2=64[/tex]
if conditional statement
[tex]P\implies Q[/tex]
Then, converse statement
[tex]Q\implies P[/tex]
Converse statement of given conditional statement:
If [tex]x^2=64[/tex], then x=8
But , it is not true because when [tex]x^2=64[/tex], then [tex]x=\pm 8[/tex]
Therefore, it is false.