. For the following true conditional statement, write the converse. If the converse is also true, combine the statements as a biconditional. If x = 8, then x2 = 64.

Respuesta :

Answer: The converse of the statement will be :

[tex]\text{If }x^2 = 64\text{, then } x=8.[/tex] which is not true.

Step-by-step explanation:

The given statement : [tex]\text{If } x = 8\text{, then }x^2 = 64.[/tex]

To write a converse of a conditional statement "p then q",  will be "q then p" the hypothesis and conclusion interchanges .

Then the converse of the statement will be :

[tex]\text{If } x^2 = 64\text{, then }x=8.[/tex] which is not true.

Since , [tex]8^2=64\text{ and }-8^2=64[/tex]

Therefore,  [tex]\text{If }x^2 = 64\text{, then } x=8\ or\ x=-8.[/tex]

Answer:

If [tex]x^2=64[/tex], then x=8

Step-by-step explanation:

We are given that a conditional statement

If x=8, then [tex]x^2=64[/tex]

if conditional statement

[tex]P\implies Q[/tex]

Then, converse statement

[tex]Q\implies P[/tex]

Converse statement of given conditional statement:

If [tex]x^2=64[/tex], then x=8

But , it is not true because when [tex]x^2=64[/tex], then [tex]x=\pm 8[/tex]

Therefore, it is false.