Respuesta :

we're proceeding to verify each case


we have


[tex]y < 3x-1[/tex] ------> inequality A

[tex]y\geq -x+4[/tex] -----> inequality B

Case A) point [tex](4,0)[/tex]

[tex]x=4\\y=0[/tex]

Verify Inequality A

[tex]y < 3x-1[/tex]

[tex]0 < 3*4-1[/tex]

[tex]0 < 11[/tex] ------> is true

Verify Inequality B

[tex]y\geq -x+4[/tex]

[tex]0\geq -4+4[/tex]  

[tex]0\geq 0[/tex] -------> is true

therefore

the point [tex](4,0)[/tex] is a solution

Case B) point [tex](1,2)[/tex]

[tex]x=1\\y=2[/tex]

Verify Inequality A

[tex]y < 3x-1[/tex]

[tex]2 < 3*1-1[/tex]

[tex]2 < 2[/tex] ------> is not true

Verify Inequality B

[tex]y\geq -x+4[/tex]

[tex]2\geq -1+4[/tex]  

[tex]2\geq 3[/tex] -------> is not true

therefore

the point [tex](1,2)[/tex] is not the solution

Case C) point [tex](0,4)[/tex]

[tex]x=0\\y=4[/tex]

Verify Inequality A

[tex]y < 3x-1[/tex]

[tex]4 < 3*0-1[/tex]

[tex]4 < -1[/tex] ------> is not true

Verify Inequality B

[tex]y\geq -x+4[/tex]

[tex]4\geq -0+4[/tex]  

[tex]4\geq 4[/tex] -------> is true

therefore

the point [tex](0,4)[/tex] is not the solution

Case D) point [tex](2,1)[/tex]

[tex]x=2\\y=1[/tex]

Verify Inequality A

[tex]y < 3x-1[/tex]

[tex]1 < 3*2-1[/tex]

[tex]1 < 5[/tex] ------> is true

Verify Inequality B

[tex]y\geq -x+4[/tex]

[tex]1\geq -2+4[/tex]  

[tex]1\geq2[/tex] -------> is not true

therefore

the point [tex](2,1)[/tex] is not the solution

therefore

the answer is

[tex](4,0)[/tex]


Answer:

The answer is A

Step-by-step explanation:

I took the test