Which expression gives the length of QR in the triangle shown below?

Answer-
[tex]\boxed{\boxed{C.\ \overline{QR}=\sqrt{17^2+25^2}}}[/tex]
Solution-
As given that m∠S = 90°, so triangle QSR is right angle triangle.
Pythagoras Theorem-
It states that the square of the hypotenuse (the side opposite the right angle) is equal to the sum of the squares of the other two sides.
i.e [tex]\text{Hypotenuse}^2=\text{Base}^2+\text{Perpendicular}^2[/tex]
i.e [tex]\text{Hypotenuse}=\sqrt{\text{Base}^2+\text{Perpendicular}^2}[/tex]
Putting the values,
[tex]\overline{QR}=\sqrt{\overline{QS}^2+\overline{RS}^2}=\sqrt{17^2+25^2}[/tex]