Respuesta :

We use the Pythagoras theorem to find the length of QR

[tex]QR^{2} = QS^{2}+ SR^{2} [/tex]
[tex]QR^{2}= 25^{2}+ 17^{2} [/tex], square root both sides
[tex]QR= \sqrt{25^{2}+ 17^{2} } [/tex]

Answer-

[tex]\boxed{\boxed{C.\ \overline{QR}=\sqrt{17^2+25^2}}}[/tex]

Solution-

As given that m∠S = 90°, so triangle QSR is right angle triangle.

Pythagoras Theorem-

It states that the square of the hypotenuse (the side opposite the right angle) is equal to the sum of the squares of the other two sides.

i.e [tex]\text{Hypotenuse}^2=\text{Base}^2+\text{Perpendicular}^2[/tex]

i.e [tex]\text{Hypotenuse}=\sqrt{\text{Base}^2+\text{Perpendicular}^2}[/tex]

Putting the values,

[tex]\overline{QR}=\sqrt{\overline{QS}^2+\overline{RS}^2}=\sqrt{17^2+25^2}[/tex]