Respuesta :

k = ?
[tex]\frac{V_1}{V_2}=k^3[/tex] From theory
[tex]\frac{729m^3}{3375m^3}=k^3\\\\k^3=\frac{729}{3375}\\\\k^3=\frac{27}{125}\\\\k^3=(\frac{3}{5})^3\\\\ k=\frac{3}{5}[/tex]

Answer = 3/5

Answer:

 Ratio= [tex]\frac{3}{5}[/tex].

Step-by-step explanation:

Given  : volume 729 m³ to a cube with volume 3375 m³.

To find : What is the similarity ratio of a cube .

Solution : We have given  volume of one cube =  729 m³

Volume of second cube = 3375 m³.

Ratio = [tex]\frac{Volume\ of \ one\ cube}{Volume\ of \second\ cube}[/tex].

(ratio)³ = [tex]\frac{729}{3375}[/tex].

(ratio)³= [tex]\frac{27}{125}[/tex].

(ratio)³= [tex]\frac{3³}{5³}[/tex].

(ratio) =  [tex]\frac{3}{5}[/tex].

Therefore, Ratio= [tex]\frac{3}{5}[/tex].