Respuesta :
k = ?
[tex]\frac{V_1}{V_2}=k^3[/tex] From theory
[tex]\frac{729m^3}{3375m^3}=k^3\\\\k^3=\frac{729}{3375}\\\\k^3=\frac{27}{125}\\\\k^3=(\frac{3}{5})^3\\\\ k=\frac{3}{5}[/tex]
Answer = 3/5
[tex]\frac{V_1}{V_2}=k^3[/tex] From theory
[tex]\frac{729m^3}{3375m^3}=k^3\\\\k^3=\frac{729}{3375}\\\\k^3=\frac{27}{125}\\\\k^3=(\frac{3}{5})^3\\\\ k=\frac{3}{5}[/tex]
Answer = 3/5
Answer:
Ratio= [tex]\frac{3}{5}[/tex].
Step-by-step explanation:
Given : volume 729 m³ to a cube with volume 3375 m³.
To find : What is the similarity ratio of a cube .
Solution : We have given volume of one cube = 729 m³
Volume of second cube = 3375 m³.
Ratio = [tex]\frac{Volume\ of \ one\ cube}{Volume\ of \second\ cube}[/tex].
(ratio)³ = [tex]\frac{729}{3375}[/tex].
(ratio)³= [tex]\frac{27}{125}[/tex].
(ratio)³= [tex]\frac{3³}{5³}[/tex].
(ratio) = [tex]\frac{3}{5}[/tex].
Therefore, Ratio= [tex]\frac{3}{5}[/tex].