Respuesta :
part A
3x^2y^2-2xy^2-8y^2=y^2(3x^2-2x-8)
=y^2(3x^2-6x+4x-8)
=y^2(3x(x-2)+4(x-2))
=y^2(x-2)(3x+4)
Part BPart C
x^2-36
6*6=36
-6*6=-36
(x+6) (x-6)
3x^2y^2-2xy^2-8y^2=y^2(3x^2-2x-8)
=y^2(3x^2-6x+4x-8)
=y^2(3x(x-2)+4(x-2))
=y^2(x-2)(3x+4)
Part BPart C
x^2-36
6*6=36
-6*6=-36
(x+6) (x-6)
The factor of the expression 3x²y² − 2xy² − 8y², x² + 10x + 25, and x² − 36 will be y² (3x − 4) (x − 2), (x + 5)², and (x - 6)(x + 6).
What is a factorization?
It is a method for dividing a polynomial into pieces that will be multiplied together. At this moment, the polynomial's value will be zero.
Part A: Factor 3x²y² − 2xy² − 8y².
Then the factor of the expression will be
⇒ 3x²y² − 2xy² − 8y²
⇒ y² [3x² − 2x − 8]
⇒ y² [3x² − 6x − 4x − 8]
⇒ y² [3x(x − 2) − 4(x − 4)]
⇒ y² (3x − 4) (x − 2)
Part B: Factor x² + 10x + 25.
Then the factor of the expression will be
⇒ x² + 10x + 25
⇒ x² + 5x + 5x + 25
⇒ x(x + 5) + 5(x + 5)
⇒ (x + 5)(x + 5)
⇒ (x + 5)²
Part C: Factor x² − 36.
Then the factor of the expression will be
⇒ x² - 36
⇒ x² - 6²
⇒ (x - 6)(x + 6)
More about the factorization link is given below.
https://brainly.com/question/6810544
#SPJ2