(08.01, 08.02, 08.03, 08.05, 08.06 MC)
Part A: Factor 3x2y2 − 2xy2 − 8y2. Show your work. (4 points)

Part B: Factor x2 + 10x + 25. Show your work. (3 points)

Part C: Factor x2 − 36. Show your work. (3 points)

Respuesta :

part A
3x^2y^2-2xy^2-8y^2=y^2(3x^2-2x-8)
=y^2(3x^2-6x+4x-8)
=y^2(3x(x-2)+4(x-2))
=y^2(x-2)(3x+4)
Part BPart C
 x^2-36
6*6=36
-6*6=-36
(x+6) (x-6)

The factor of the expression 3x²y² − 2xy² − 8y², x² + 10x + 25, and x² − 36 will be y² (3x − 4) (x − 2), (x + 5)², and (x - 6)(x + 6).

What is a factorization?

It is a method for dividing a polynomial into pieces that will be multiplied together. At this moment, the polynomial's value will be zero.

Part A: Factor 3x²y² − 2xy² − 8y².

Then the factor of the expression will be

⇒ 3x²y² − 2xy² − 8y²

⇒ y² [3x² − 2x − 8]

⇒ y² [3x² − 6x − 4x − 8]

⇒ y² [3x(x − 2) − 4(x − 4)]

⇒ y² (3x − 4) (x − 2)

Part B: Factor x² + 10x + 25.

Then the factor of the expression will be

⇒ x² + 10x + 25

⇒ x² + 5x + 5x + 25

⇒ x(x + 5) + 5(x + 5)

⇒ (x + 5)(x + 5)

⇒ (x + 5)²

Part C: Factor x² − 36.

Then the factor of the expression will be

⇒ x² - 36

⇒ x² - 6²

⇒ (x - 6)(x + 6)

More about the factorization link is given below.

https://brainly.com/question/6810544

#SPJ2