Respuesta :
Answer:
In factor [tex]y=(x-13)(x+11)[/tex] and The zeros are x=13 and x=-11
C is correct.
Step-by-step explanation:
Given: [tex]y=x^2-2x-143[/tex]
Factor the function,
[tex]y=x^2-2x-143[/tex]
[tex]y=(x^2-13x)+(11x-143)[/tex]
[tex]y=x(x-13)+11(x-13)[/tex]
[tex]y=(x-13)(x+11)[/tex]
Factor of the given function is (x-13)(x+11)
If we find the zeros of the function, we will set each factor to zero.
x-13 = 0 and x+11=0
x=13,-11
The zeros of the function are 13 and -11
Hence, In factor [tex]y=(x-13)(x+11)[/tex] and The zeros are x=13 and x=-11