Simplify the radical expression.
Sqrt (20)

Simplify the radical expression.
Sqrt (56x^2)

Simplify the radical expression.
Sqrt (150[x^3][k^4]

Simplify the radical expression.
Sqrt (14q) * 2[sqrt (4q)]

Respuesta :

√20 = √4x5 = 2√5

√56²= 56

√[150.(x³)(k⁴)] = √(6*25)(x².x).k⁴ ==>5xk²√6x

√[(14q) *2√(4q)] = 14(q√2²q) ==>28q√q

Given the data from the question, the simplified expressions are

  • √20 = 2√5
  • √(56x²) = 2x√14
  • √[150x³k⁴] = 5xk²√6x
  • √14q × 2√4q = 4q√14

Simplification of surd

To simply surds, one of the entity that makes up the number must be a perfect square.

How to simplify √20

Recall

20 = 4 × 5

Thus,

√20 = √(4 × 5)

√20 = 2√5

How to simplify √(56x²)

√(56x²) = √56 × √x²

Recall

√56 = √(4 × 14) = 2√14

√x² = x

Thus,

√(56x²) = 2√14 × x

√(56x²) = 2x√14

How to simplify √[150x³k⁴]

√[150x³k⁴] = √150 × √x³ × √k⁴

Recall

√150 = √(25 × 6) = 5√6

√x³ = √(x² × x) = x√x

√k⁴ = k²

Thus,

√[150x³k⁴] = 5√6 × x√x × k²

√[150x³k⁴] = 5k²x√6x

How to simplify √14q × 2√4q

√14q × 2√4q = 2√(14q × 4q)

√14q × 2√4q = 2 × 2q√14

√14q × 2√4q = 4q√14

Learn more about surd:

https://brainly.com/question/24700530