Respuesta :
√20 = √4x5 = 2√5
√56²= 56
√[150.(x³)(k⁴)] = √(6*25)(x².x).k⁴ ==>5xk²√6x
√[(14q) *2√(4q)] = 14(q√2²q) ==>28q√q
√56²= 56
√[150.(x³)(k⁴)] = √(6*25)(x².x).k⁴ ==>5xk²√6x
√[(14q) *2√(4q)] = 14(q√2²q) ==>28q√q
Given the data from the question, the simplified expressions are
- √20 = 2√5
- √(56x²) = 2x√14
- √[150x³k⁴] = 5xk²√6x
- √14q × 2√4q = 4q√14
Simplification of surd
To simply surds, one of the entity that makes up the number must be a perfect square.
How to simplify √20
Recall
20 = 4 × 5
Thus,
√20 = √(4 × 5)
√20 = 2√5
How to simplify √(56x²)
√(56x²) = √56 × √x²
Recall
√56 = √(4 × 14) = 2√14
√x² = x
Thus,
√(56x²) = 2√14 × x
√(56x²) = 2x√14
How to simplify √[150x³k⁴]
√[150x³k⁴] = √150 × √x³ × √k⁴
Recall
√150 = √(25 × 6) = 5√6
√x³ = √(x² × x) = x√x
√k⁴ = k²
Thus,
√[150x³k⁴] = 5√6 × x√x × k²
√[150x³k⁴] = 5k²x√6x
How to simplify √14q × 2√4q
√14q × 2√4q = 2√(14q × 4q)
√14q × 2√4q = 2 × 2q√14
√14q × 2√4q = 4q√14
Learn more about surd:
https://brainly.com/question/24700530