Respuesta :

the answer is B. 342cm^2

Using the Pythagorean theorem, we can calculate the apothem of the pentagon.

We have then:

[tex] a = \sqrt{12 ^ 2 - (\frac{14.1}{2}) ^ 2}

a = 9.7
[/tex]

Then, the area of the pentagon is given by:

[tex] A = 5 * (\frac{1}{2}) * (L) * (a)
[/tex]

Where,

L: side of the pentagon

a: apotema

Substituting values:

[tex] A = 5 * (\frac{1}{2}) * (14.1) * (9.7)

A = 341.925
[/tex]

Rounding the nearest whole we have:

[tex] A = 342 cm ^ 2
[/tex]

Answer:

the approximate area of the regular pentagon is:

[tex] A = 342 cm ^ 2
[/tex]