Respuesta :

Answer:

[tex]x^2+y^2=16[/tex]

Step-by-step explanation:

Given: [tex]x=4\cos t, y=4\sin t[/tex]

We need to eliminate the parameter t from parametric equation.

[tex]x=4\cos t[/tex]

Square both sides

[tex]x^2=(4\cos t)^2[/tex]

[tex]x^2=16\cos^2 t[/tex]

[tex]y=4\sin t[/tex]

Square both sides

[tex]y^2=(4\sin t)^2[/tex]

[tex]y^2=16\sin^2 t[/tex]

Add both equation

[tex]x^2+y^2=16\cos^2t+16\sin^2t[/tex]

[tex]x^2+y^2=16(\cos^2t+\sin^2t)[/tex]         [tex]\because \sin^2\theta+\cos^2\theta = 1[/tex]

[tex]x^2+y^2=16[/tex]

Hence, The new equation without parameter t would be [tex]x^2+y^2=16[/tex]

After eliminating the parameter the equation can be written as  x²+y² =16.

What are the Trigonometric functions?

[tex]Sin \theta=\dfrac{Perpendicular}{Hypotenuse}[/tex]

[tex]Cos \theta=\dfrac{Base}{Hypotenuse}[/tex]

[tex]Tan \theta=\dfrac{Perpendicular}{Base}[/tex]

where perpendicular is the side of the triangle which is opposite to the angle, and the hypotenuse is the longest side of the triangle which is opposite to the 90° angle.

We need to eliminate the parameter t from equations, therefore, we can write  for x,

Given to us

x = 4 cos t

y = 4 sin t

[tex]x = 4 cos t\\\\\text{Squaring both the sides}\\\\x^2 = 16\cos^2t[/tex]

Rewriting the equation of y,

[tex]y = 4 sin t\\\\\text{Squaring both the sides}\\\\y^2 = 16\ sin^2t[/tex]

Sum of both the equations

When we Add both the equations we get,

[tex]x^2+y^2 = 16 cos^2 t+16 sin^2t\\\\\text{Taking 16 as the common factor}\\\\x^2+y^2 = 16 (cos^2 t+sin^2t)\\\\[/tex]

Using the trigonometric identity,

[tex]cos^2 x+sin^2x=1[/tex]

Therefore,

[tex]x^2+y^2 = 16 (cos^2 t+sin^2t)\\\\x^2+y^2 = 16 (1)\\\\x^2+y^2 = 16[/tex]

Hence, After eliminating the parameter the equation can be written as  x²+y² =16.

Learn more about Trigonometric functions:

https://brainly.com/question/6904750