Respuesta :
The answer is 3√5 mi.
The formula is: d = √(3h/2)
Wyatt:
h = 120 ft
d = √(3 * 120/2) = √180 = √(36 * 5) = √36 * √5 = 6√5 mi
Shawn:
h = 270 ft
d = √(3 * 270/2) = √405 = √(81 * 5) = √81 * √5 = 9√5 mi
How much farther can Shawn see to the horizon?
Shawn - Wyatt = 9√5 - 6√5 = 3√5 mi
The formula is: d = √(3h/2)
Wyatt:
h = 120 ft
d = √(3 * 120/2) = √180 = √(36 * 5) = √36 * √5 = 6√5 mi
Shawn:
h = 270 ft
d = √(3 * 270/2) = √405 = √(81 * 5) = √81 * √5 = 9√5 mi
How much farther can Shawn see to the horizon?
Shawn - Wyatt = 9√5 - 6√5 = 3√5 mi
The distance can Shawn see to the horizontal is 6.7 miles.
Horizontal distance
The following formula is used to calculate the horizontal distance;
[tex]\rm d=\sqrt{\dfrac{3h}{2}}[/tex]
Given information
Wyatt’s eye-level height is 120 ft above sea level, and Shawn’s eye-level height is 270 ft above sea level.
Wyatt’s eye-level height - h₁ = 120ft is;
[tex]\rm d_1=\sqrt{\dfrac{3h_1}{2}}\\\\\rm d_1=\sqrt{\dfrac{3 \times 120}{2}}\\\\\rm d_1=\sqrt{3\times 60}\\\\\rm d_1=\sqrt{180}\\\\d_1=13.43[/tex]
Shawn’s eye-level height - h₂ = 270ft
[tex]\rm d_2=\sqrt{\dfrac{3h_2}{2}}\\\\\rm d_2=\sqrt{\dfrac{3 \times 270}{2}}\\\\\rm d_2=\sqrt{3\times 135}\\\\\rm d_2=\sqrt{405}}\\\\d_2=20.12[/tex]
The distance can Shawn see to the horizontal is;
[tex]\rm d=d_2-d_1\\\\d=20.12 - 13.42 \\\\ d= 6.7[/tex]
Hence the distance can Shawn see to the horizontal is 6.7 miles.
To know more about horizontal distance click the link given below.
https://brainly.com/question/3780326