Wyatt’s eye-level height is 120 ft above sea level, and Shawn’s eye-level height is 270 ft above sea level. How much farther can Shawn see to the horizon? Use the formula mc024-1.jpg, mc024-2.jpg with d being the distance they can see in miles and h being their eye-level height in feet. mc024-3.jpg mi mc024-4.jpg mi mc024-5.jpg mi mc024-6.jpg mi

Respuesta :

The answer is 3√5 mi.

The formula is: d = √(3h/2)

Wyatt:
h = 120 ft
d = √(3 * 120/2) = √180 = √(36 * 5) = √36 * √5 = 6√5 mi

Shawn:
h = 270 ft
d = √(3 * 270/2) = √405 = √(81 * 5) = √81 * √5 = 9√5 mi

How much farther can Shawn see to the horizon?
Shawn - Wyatt = 9
√5 - 6√5 = 3√5 mi

The distance can Shawn see to the horizontal is 6.7 miles.

Horizontal distance

The following formula is used to calculate the horizontal distance;

[tex]\rm d=\sqrt{\dfrac{3h}{2}}[/tex]

Given information

Wyatt’s eye-level height is 120 ft above sea level, and Shawn’s eye-level height is 270 ft above sea level.

Wyatt’s eye-level height - h₁ = 120ft is;

[tex]\rm d_1=\sqrt{\dfrac{3h_1}{2}}\\\\\rm d_1=\sqrt{\dfrac{3 \times 120}{2}}\\\\\rm d_1=\sqrt{3\times 60}\\\\\rm d_1=\sqrt{180}\\\\d_1=13.43[/tex]

Shawn’s eye-level height - h₂ = 270ft

[tex]\rm d_2=\sqrt{\dfrac{3h_2}{2}}\\\\\rm d_2=\sqrt{\dfrac{3 \times 270}{2}}\\\\\rm d_2=\sqrt{3\times 135}\\\\\rm d_2=\sqrt{405}}\\\\d_2=20.12[/tex]

The distance can Shawn see to the horizontal is;

[tex]\rm d=d_2-d_1\\\\d=20.12 - 13.42 \\\\ d= 6.7[/tex]

Hence the distance can Shawn see to the horizontal is 6.7 miles.

To know more about horizontal distance click the link given below.

https://brainly.com/question/3780326