Respuesta :

Erike
(2, 1) is the answer

Answer:

[tex]F(2,1)[/tex]

Step-by-step explanation:

Step 1

Find the x-coordinate of point F

we know that

The formula to calculate the x-coordinate midpoint between the point D and the point F is equal to

[tex]Mx=\frac{Dx+Fx}{2}[/tex]

substitute the values

[tex]-6=\frac{-14+Fx}{2}[/tex]

Solve for Fx

[tex]-12=-14+Fx[/tex]

[tex]Fx=2[/tex]

Step 2

Find the y-coordinate of point F

we know that

The formula to calculate the y-coordinate midpoint between the point D and the point F is equal to

[tex]My=\frac{Dy+Fy}{2}[/tex]

substitute the values

[tex]7=\frac{13+Fy}{2}[/tex]

Solve for Fy

[tex]14=13+Fy[/tex]

[tex]Fy=1[/tex]

The coordinates of the point F are [tex](2,1)[/tex]