Respuesta :

The solution would be like this for this specific problem:

sin(θ°) = √(2)/2 

θ° = 360°n + sin⁻¹(√(2)/2) and θ° = 360°n + 180° − sin⁻¹(√(2)/2)
θ° = 360°n + 45° and θ° = 360°n + 135° where n∈ℤ 

360°*0 + 45° = 45° 
360°*0 + 135° = 135° 
360°*1 + 45° = 405° 

sin(225°) = -√(2)/2

225 has an angle where sin theta= -(sqrt2)/2 therefore, the value of theta cannot be 225 degrees.

Answer:

225° is not possible

Step-by-step explanation:

Given that

[tex]\sin \theta=\frac{\sqrt{2}}{2}[/tex]

we have to choose the option which could not be the value of theta.

[tex]\sin \theta=\frac{\sqrt{2}}{2}[/tex]

[tex]\sin \theta=\frac{1}{\sqrt2}=\sin45^{\circ}[/tex]

[tex]\theta=45^{\circ}[/tex]

As sine is positive in second and fourth quadrant.

⇒ [tex]\sin 45=\sin(180-45)=\sin135[/tex]

Also, [tex]\sin 45=\sin(360+45)=\sin405[/tex]

[tex]\text{Hence, the value of }\theta \text{which are possible are } 45^{\circ}, 135^{\circ}, 405^{\circ}[/tex]

Therefore 225° is not possible