Respuesta :
If sinxcos(π/7) - sin(π/7) cosx = - √ 2 / 2 , then x can equal: ______ Check all that apply: 1)π/4 ... Best Answer: sin ( x - ( pi / 7 ) ) = - sqrt ( 2 ) / 2
Answer:
Options B and D
Step-by-step explanation:
Given that
[tex]cos x cos \frac{\pi}{7} +sinx sin \frac{\pi}{7} =\frac{-\sqrt{2} }{2}[/tex]
Use the formula for sum angles for Cos as
Cos A cos B +sin A sin B = cos (A-B)
we have
[tex]cos (x-\frac{\pi}{7} ) = \frac{-\sqrt{2} }{2}[/tex]
First let us solve principal solution
cos negative in the II quadrant
Hence principal soluton is [tex]\pi-\frac{\pi}{4} =\frac{3\pi}{4}[/tex]+[tex]\frac{\pi}{7}[/tex]
Again it is negative in third quadrant i.e. x = [tex]\frac{5\pi}{4}[/tex]+[tex]\frac{\pi}{7}[/tex]
General solution is [tex]\frac{5\pi}{4}[/tex]+[tex]\frac{\pi}{7}+2n\pi and\\\\\frac{3\pi}{4}[/tex]+[tex]\frac{\pi}{7}+2n\pi[/tex]
Options B and D