Respuesta :

[tex]\bf \textit{area of a circle}=A=\pi r^2 \\\\\\ \cfrac{dA}{dt}=\pi \cdot 2r^1\cdot \cfrac{dr}{dt}\implies \cfrac{dA}{dt}=\pi \cdot 2r\cdot \cfrac{dr}{dt}\quad \begin{cases} r=2\\ \frac{dr}{dt}=3 \end{cases} \\\\\\ \cfrac{dA}{dt}=\pi \cdot 2(2)(3)[/tex]
area=pir^2
take deritivive
dA/dt=2pir (dr/dt)
given dr/dt=3
dA/dt=2pi(2)(3)
dA/dt=12pi