Respuesta :
[tex]\bf \textit{area of a circle}=A=\pi r^2
\\\\\\
\cfrac{dA}{dt}=\pi \cdot 2r^1\cdot \cfrac{dr}{dt}\implies \cfrac{dA}{dt}=\pi \cdot 2r\cdot \cfrac{dr}{dt}\quad
\begin{cases}
r=2\\
\frac{dr}{dt}=3
\end{cases}
\\\\\\
\cfrac{dA}{dt}=\pi \cdot 2(2)(3)[/tex]
area=pir^2
take deritivive
dA/dt=2pir (dr/dt)
given dr/dt=3
dA/dt=2pi(2)(3)
dA/dt=12pi
take deritivive
dA/dt=2pir (dr/dt)
given dr/dt=3
dA/dt=2pi(2)(3)
dA/dt=12pi