Answer:
[tex]F=\dfrac{9C+160}{5}[/tex]
Step-by-step explanation:
Given equation:
[tex]C=\dfrac{5(F-32)}{9}[/tex]
Multiply both sides by 9:
[tex]\implies 9C=5(F-32)[/tex]
Divide both sides by 5:
[tex]\implies \dfrac{9C}{5}=F-32[/tex]
Add 32 to both sides:
[tex]\implies \dfrac{9C}{5}+32=F[/tex]
[tex]\implies F=\dfrac{9C}{5}+32[/tex]
Rewrite 32 as a fraction with denominator 5:
[tex]\implies F=\dfrac{9C}{5}+\dfrac{32 \cdot 5}{5}[/tex]
[tex]\implies F=\dfrac{9C}{5}+\dfrac{160}{5}[/tex]
[tex]\textsf{Apply the fraction rule} \quad \dfrac{a}{c}+\dfrac{b}{c}=\dfrac{a+b}{c}:[/tex]
[tex]\implies F=\dfrac{9C+160}{5}[/tex]