In ΔWXY, \overline{WY}
WY
is extended through point Y to point Z, \text{m}\angle YWX = (3x+17)^{\circ}m∠YWX=(3x+17)

, \text{m}\angle XYZ = (10x-5)^{\circ}m∠XYZ=(10x−5)

, and \text{m}\angle WXY = (3x+2)^{\circ}m∠WXY=(3x+2)

. Find \text{m}\angle WXY.m∠WXY.

Respuesta :

Answer:

20°

Step-by-step explanation:

Exterior angle property: The exterior angle of a triangle equals the sum of opposite interior angles.

  ∠XYZ  = ∠YWX + ∠WXY

10x - 5   = 3x + 17 + 3x + 2

 10x - 5  = 3x + 3x + 17 + 2

  10x - 5 = 6x + 19

        10x = 6x + 19 + 5

        10x = 6x + 24

10x - 6x  = 24

        4x  = 24

         x   = 24÷ 4

           [tex]\sf \boxed{x = 6}[/tex]

∠WXY =  3x + 2

           = 3*6 + 2

          = 18 + 2

          = 20°