Respuesta :
Trivially, we have
[tex]a_2 = \sqrt{1+a_1} = \sqrt2 > 1 = a_1[/tex]
so the base case is satisfied.
Assume [tex]a_k > a_{k-1}[/tex], so
[tex]a_k = \sqrt{1+a_{k-1}} > a_{k-1}[/tex]
We want to use this to show [tex]a_{k+1} > a_k[/tex]. [tex]\sqrt x[/tex] is an increasing function, so from our assumption it follows that
[tex]a_{k+1} = \sqrt{1 + a_k} > \sqrt{1 + a_{k-1}} = a_k[/tex]
QED
Answer + Step-by-step explanation:
[tex]a_{1}=1[/tex]
[tex]a_{2}=\sqrt{1+a_{1}} =\sqrt{1+1} = \sqrt{2}[/tex]
then
[tex]a_{2} \geq a_{1}[/tex]
[tex]\text{suppose}\ a_{n+1} \geq a_{n}\ \text{and prove that} \ a_{n+2}\geq a_{n+1}[/tex]
[tex]a_{n+2}=\sqrt{1+a_{n+1}} \geq \sqrt{1+a_{n}} = a_{n+1}[/tex]
Then
[tex]a_{n+2} \geq a_{n+1}[/tex]
Then ,according to the principal of mathematical induction:
the sequence (an) is increasing.