Respuesta :

The correct option is C.

polar representation: z = x + i y = r (cosθ + i sinθ)

where, r is the modulus=|z| and θ = argument of the complex number

taking the modulus, |z| as from polar representation

[tex]|2\sqrt{3} +3i| =\sqrt{(2\sqrt{3})^{2}+2^2 } = \sqrt{12+4}=\sqrt{16} =4=r[/tex]

taking argument,

[tex]cos(arg(2\sqrt{3}+2i ))=\frac{x}{|z|} =\frac{2\sqrt{3}}{4} =\frac{\sqrt{3}}{2}[/tex]

[tex]arg(2\sqrt{3} +2i)\\[/tex] =  π/6=  θ

therefore, polar representation:     4(cos(π/6)+ i sin(π/6))

The correct option is C.

learn more about polar representation of complex number here:

https://brainly.com/question/27680000

#SPJ1