Answer:
[tex]sin(\frac{143.13}{2} )=0.9487\\\\cos(\frac{143.13}{2} )=0.3162\\\\tan(\frac{143.13}{2} )=2.9999=3\\[/tex]
Step-by-step explanation:
angles in II quadrant are found by solvig 180- ∅ where ∅ is the acute angle
Let us then find the acute angle: in[tex]cos^{-} (\frac{4}{5}) = 36.86^{0} \\\\so \ x \ the \ angle \ in \ the \ second \ quadrant \ is \ 180-36.86=143.13^{0} \\\\sin(\frac{143.13}{2} )=0.9487\\\\cos(\frac{143.13}{2} )=0.3162\\\\tan(\frac{143.13}{2} )=2.9999=3\\[/tex]