Respuesta :
Answer:
x + 5y = 40
Step-by-step explanation:
the equation of the line in slope- intercept form is
y = mx + c ( m is the slope and c the y- intercept )
here m = - [tex]\frac{1}{5}[/tex] and c = 8 , then
y = - [tex]\frac{1}{5}[/tex] x + 8 ( multiply through by 5 to clear the fraction )
5y = - x + 40 ( add x to both sides )
x + 5y = 40 ← in standard form
⊰________________________________________________________⊱
Answer:
See Below.
Step-by-step explanation:
[tex]\large\begin{gathered}\sf{First, \ let's \ write \ the \ equation \ in \ slope-intercept \ form.}\\\sf{ Slope-Intercept \ form \ is \curvearrowright} \\\boxed{y=mx+b}}\\\sf{Substitute \ the \ pieces \ of \ information \ we \ have \curvearrowright\\\sf{ y=-\dfrac{1}{5}x+8}\\\sf{Now, if \ we \ multiply \ the \ entire \ equation \ by \ 5, \ we'll \ have:} \\\sf{5y=-x+40}\\\sf{And \ finally, move \ \bf{x} \ \sf{to \ the \ left \ with \ the \ opposite \ sign: x+5y=40.}\end{gathered} \bigstar \\\bigstar[/tex]
Done!!
⊱______________________________________________________⊰
[tex]\overbrace{C}\underbrace{A}\overbrace{L}\underbrace{L}\overbrace{I}\underbrace{G}\overbrace{R}\underbrace{A}\overbrace{P}\underbrace{H}\overbrace{Y}[/tex]