By Green's theorem,
[tex]\displaystyle \int_C P(x,y)\,dx + Q(x,y)\,dy = \iint_D \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \, dA[/tex]
where [tex]D[/tex] is the interior of [tex]C[/tex]. It's easy to see that
[tex]D = \left\{(x,y) ~:~ 1 \le x \le 3 \text{ and } 1 \le y \le 4\right\}[/tex]
Now,
[tex]\dfrac{\partial Q}{\partial x} = \dfrac{\partial}{\partial x}(-x^2) = -2x[/tex]
[tex]\dfrac{\partial P}{\partial y} = \dfrac{\partial}{\partial y}(\ln(x) + y) = 1[/tex]
so that the line integral reduces to
[tex]\displaystyle \int_C (\ln(x)+y)\,dx - x^2\,dy = -\int_1^3 \int_1^4 (2x+1) \, dy\,dx = \boxed{-30}[/tex]