What is the simplified form of 4 log3y - 6 log3x + 7 log3z?

[tex] \qquad \qquad \bf \huge\star \: \: \large{ \underline{Answer} } \huge \: \: \star[/tex]
[ b ] is the Correct one
[tex]\textsf{ \underline{\underline{Steps to solve the problem} }:}[/tex]
[tex] \qquad❖ \: \sf \:4 \: log_{3}(y) - 6 \: log_{3}(x) + 7 \: log_{3}(z) [/tex]
[tex] \qquad❖ \: \sf \: \: log_{3}(y {}^{4} ) - \: log_{3}(x {}^{6} ) +\: log_{3}(z {}^{7} ) [/tex]
[tex] \qquad❖ \: \sf \: \: log_{3}(y {}^{4} ) + \: log_{3}(z{}^{7} ) - \: log_{3}(x {}^{6} ) [/tex]
([tex] \sf a\: log (b) = log {b}^{a}[/tex])
[tex] \qquad❖ \: \sf \: log_{3}( {y}^{4} {z}^{7} ) - log_{3}( {x}^{6} {}^{} ) [/tex]
([tex] \sf{log (a) + log (b) = log (ab)} [/tex])
[tex] \qquad❖ \: \sf \: log_{3} \bigg( \dfrac{y {}^{4} {z}^{7} }{ {x}^{6} } \bigg ) [/tex]
([tex] \sf{log (a) - log (b) = log (a/b)} [/tex])
[tex] \qquad \large \sf {Conclusion} : [/tex]
[ b ] is the Correct choice