For some integer n, the first, the third and the fifth terms of an arithmetic sequence are respectively 3n, 5n – 6, and 11n + 8. What is the fourth term?

Respuesta :

Answer:

a₄=8n+1= -39.

Step-by-step explanation:

1) if a₁=3n; a₃=5n-6 and a₅=11n+8, then it is possible to calculate the difference according to 0.5(a₅-a₃)=0.5(a₃-a₁). Then

2) 0.5(11n+8-5n+6)=0.5(5n-6-3n); ⇔ 6n+14=2n-6; ⇔ n= -5.

3) if n=-5, then the 4th term is:

[tex]a_4=\frac{a_5+a_3}{2}; \ = > \ a_4=\frac{11n+8+5n-6}{2}=8n+1;[/tex]

or a₄=-39.